
Journal of Computational Physics 228 (2009) 3390–3404
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
QWalk: A quantum Monte Carlo program for electronic structure

Lucas K. Wagner a,b,*, Michal Bajdich a, Lubos Mitas a

a Center for High Performance Simulation and Department of Physics, North Carolina State University, Raleigh, NC 27695, United States
b The CNS Group, 366 Le Conte Hall #3700, Berkeley, CA 94720-3700, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 5 December 2007
Received in revised form 3 November 2008
Accepted 20 January 2009
Available online 29 January 2009

Keywords:
Monte Carlo
Stochastic methods
Quantum mechanics
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.01.017

* Corresponding author. Address: Center for High
United States.

E-mail addresses: lkwagner@berkeley.edu, lucas.
We describe QWalk, a new computational package capable of performing quantum Monte
Carlo electronic structure calculations for molecules and solids with many electrons. We
describe the structure of the program and its implementation of quantum Monte Carlo
methods. It is open-source, licensed under the GPL, and available at the web site http://
www.qwalk.org.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The solution of the stationary Schrödinger equation for interacting systems of quantum particles is one of the key chal-
lenges in quantum chemistry and condensed matter physics. Many problems in electronic structure of atoms, molecules,
clusters and solids require the ground and excited eigenstates of the electron–ion (or electron–nucleus) Born–Oppenheimer
Hamiltonian
H ¼ �1
2

X
i

r2
i �

X
iI

ZI

riI
þ
X
i>j

1
rij
; ð1Þ
where upper/lower cases indicate nuclei/electrons. Due to the Coloumb interaction, the eigenstates are very complicated func-
tions in the in 3Ne-dimensional space where Ne is the number of electrons. Over the past six decades or so, physicists and chem-
ists have developed many powerful approaches and theories that attempt to solve the electronic structure problem with
varying degrees of accuracy. Among these are the wave function methods such as Hartree–Fock (HF) and post Hartree–Fock
(post-HF), and also methodologies which are based on functionals of electron density such as density functional theories
(DFT). Because none of them are exact in practice, each of these methods occupies its place in the computational toolbox.
DFT represents an excellent tradeoff between accuracy and computational efficiency, allowing thousands of electrons to be
treated, usually getting qualitative trends correctly for many quantities and materials such as cohesive/binding energies, many
(but not all) energy differences between different systems, and can even be quantitatively accurate for some quantities (such as
geometries), especially for the systems of atoms from the first two rows of the periodic table. Many systems and effects are,
however, not accurately described (van der Waals systems, systems with transition metal atoms, many excitations, among oth-
ers) and require treatment of quantum many-body effects more accurately. One can then turn to post-Hartree–Fock methods
. All rights reserved.

Performance Simulation and Department of Physics, North Carolina State University, Raleigh, NC 27695,

wagner@gmail.com (L.K. Wagner), mbajdic@ncsu.edu (M. Bajdich), lmitas@ncsu.edu (L. Mitas).

http://www.qwalk.org
http://www.qwalk.org
mailto:lkwagner@berkeley.edu
mailto:lucas.wagner@gmail.com
mailto:mbajdic@ncsu.edu
mailto:lmitas@ncsu.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404 3391
based on sophisticated expansions of wave functions in one-particle basis sets. These methods can be made formally exact at
the cost of exponential scaling with system size, and the most accurate approximate methods scale quite poorly with the sys-
tem size, say, OðN5—7

e Þ. It is very difficult to find a method that scales well, at most OðN3
e Þ, and also offers higher accuracy than

DFT.
Quantum Monte Carlo methods fill this gap by using stochastic algorithms to treat the many-body wave function in the

full 3Ne-dimensional space. This approach has several advantages – good scaling in the number of electrons ðOðN2—3
e Þ,

depending on the quantity of interest) and is amenable to parallel implementations at 99% efficiency. Over the past �20
years, QMC has been applied to a host of systems such as model systems, atoms, molecules and solids, with impressive accu-
racy across this wide range [1–6]. For extended systems, particularly, it is the most accurate method available for total ener-
gies on the materials that have been tested. Since these calculations represent rather recent developments, the packages for
QMC are currently in development and only a few options are available for the community at large. We have developed a
new program QWalk for general purpose QMC calculations written in C++ with modern programming techniques and incor-
porating state of the art quantum Monte Carlo algorithms including variational, diffusion and reptation Monte Carlo in a fast
and flexible code. QWalk has already been used in several publications [7–12], and we would like to present a summary of its
current capabilities.

There are several packages in existence that perform QMC calculations [13–16]; however, QWalk offers unique capabil-
ities in the design of the software and the attitude towards third party contributions. The code is centered around principles
of separation of data and abstraction of types, in that each piece of code knows as little as possible about the context in which
it is used and the objects that it uses. This structure has three major effects on code development: (1) avoiding bugs by keep-
ing the number of interactions between different parts of the code small, (2) enabling new developers to quickly add new
features into the code, and (3) enabling interchangeability of different pieces of code that perform equivalent tasks. This
structure allows us to achieve the two goals of adding developers to the QWalk community and experimenting with new
QMC methodologies.

2. Methods

QWalk implements three flavors of quantum Monte Carlo methods: variational Monte Carlo, diffusion Monte Carlo, and
reptation Monte Carlo. They each offer different tradeoffs in speed, accuracy, and which quantities are available. We give a
summary here.

2.1. Variational Monte Carlo

The expectation value for an arbitrary operator O and a given trial wave function WT is given by
hOi ¼ hWT jOjWTi
hWT jWTi

¼
R

W2
TðRÞ½OWTðRÞ=WTðRÞ�dRR

W2
TðRÞdR

;

where R ¼ ðr1; r2; . . . ; rNe Þ denotes a set of Ne electron coordinates in 3D space. Typically, such integrals are evaluated by
reducing the multi-dimensional integral into a sum of products of low-dimensional integrals. Unfortunately, this either re-
stricts the functional form of WTðRÞ or makes the calculations undo-able for more than a few electrons. One of the key moti-
vations for employing stochastic approaches is to eliminate this restriction and to gain qualitatively new variational freedom
for describing many-body effects.

In order to evaluate the expectation value integral stochastically we first generate a set fRmg of statistically independent
sampling points distributed according to W2

TðRÞ using the Metropolis [17,18] algorithm. In this algorithm, there is some free-
dom in choosing the moves. For atoms with effective core potentials, we use the moves as outlined in Ref. [1], modified with
a delayed rejection step similar to Ref. [19], although developed independently, and for full-core calculations, we use the
accelerated Metropolis method from Ref. [20]. The total energy and its components are evaluated, as well as other properties.
The expectation value is then estimated by averaging over the samples fRmg. For example, the VMC energy is given by the
average of the quantity called local energy
EVMC ¼
1
M

XM

m¼1

HWTðRmÞ
WTðRmÞ

þ e ¼ 1
M

XM

m¼1

ElocðRmÞ þ e
with the statistical error e proportional to 1=
ffiffiffiffiffi
M
p

.
It is straightforward to apply the variational theorem in this framework. Consider a variational wave function WTðR; PÞ,

where R is the set of all the electron positions and P is the set of variational parameters in the wave function
EðPÞ ¼
R

WTðR; PÞHWTðR; PÞdRR
W2

TðR; PÞdR
: ð2Þ
A (hopefully) good approximation to the ground state is then the wave function with the set of parameters P that minimizes
EðPÞ. The stochastic method of integration allows us to use explicitly correlated trial wave functions defined in the next



3392 L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404
section such as the compact Slater–Jastrow form. In fact, as long as the trial function and its derivatives can be evaluated
quickly, any functional form can be used.

2.2. Diffusion Monte Carlo

To obtain accuracy beyond a given variational ansatz, we employ another method which projects out the ground state of a
given symmetry from any trial wave function. To do this, we simulate the action of the operator e�ðH�E0Þs on the trial function,
where s is the projection time and E0 is the self-consistently determined energy of the ground state. As s!1; e�ðH�E0ÞsWT !
U0, where U0 is the ground state of a given symmetry. For large s, there is no general expansion for e�ðH�E0Þs, but for small s,
we can write the projection operator in R-representation
GðR0;R; sÞ ¼ expð�ðR0 � RÞ2=2sÞ � exp½�sðVðRÞ þ VðR0Þ � 2E0Þ=2� þ Oðs3Þ
using the Trotter’s expansion formula for small s. The resulting Green’s function can be interpreted as a product of a diffusion
kernel GDðR0;R; sÞ ¼ expð�ðR0 � RÞ2=2sÞ and a branching kernel GBðR0;R; sÞ ¼ ½�sðVðRÞ þ VðR0Þ � 2E0Þ=2�.

The basic idea of diffusion Monte Carlo (DMC) is to sample a path
GðRN;RN�1; sÞ � � �GðR2;R1; sÞWTðR1Þ: ð3Þ
For N large enough (for a long enough path), the distribution of RN will approach U0. However, to interpret this as a stochastic
process, the path distribution must be positive; that is, the product of all G’s with WT must be positive. This gives rise to the
fixed-node approximation [21–24], where the nodes (the places where the trial function equals zero) of the trial wave func-
tion are used as approximation to the nodes of the ground state wave function. One can avoid this restriction by performing a
released-node calculation [25], although the price is a change from polynomial to exponential scaling with system size. With
the nodal constraint, the diffusion Monte Carlo approach typically obtains 90–95% of the correlation energy in an amount of
time proportional to Na

e where a ¼ 2;3 depending on actual implementation and type of the system. In what follows we
therefore assume that the fixed-node condition is enforced and therefore U0 is the antisymmetric ground state for a given
fixed-node boundary condition.

In actual calculations, we perform an importance-sampling transformation, where GðR0;R; sÞ is replaced by the impor-
tance sampled Green’s function
~GðR0;R; sÞ ¼ WTðR0ÞGðR0;R; sÞ=WTðRÞ: ð4Þ
The diffusion part of the Green’s function then becomes a diffusion-drift kernel
GDðR0;R; sÞ ¼ expð�ðR0 � R � srlnWTðRÞÞ2=2sÞ; ð5Þ
while the branching part is transformed into
GBðR0;R; sÞ ¼ exp½�sðELðRÞ þ ELðR0Þ � 2E0Þ=2�; ð6Þ
where ELðRÞ ¼ ½HWTðRÞ�=WTðRÞ is the local energy. Both statistical sampling and averaging efficiency are vastly improved
since the ‘force’r ln WTðRÞ biases the walk to where the wave function is large, and the local energy ELðRÞ is much smoother
than the potential energy. Assuming N is large, the path ~GðRN;RN�1; sÞ � � � ~GðR2;R1; sÞW2

TðR1Þ, samples the distribution
WTðRNÞU0 ðRNÞ, which is called the mixed distribution. The ground state energy is obtained from the integralR

WTU0HWT=WT dR ¼
R

U0HWT dR ¼ E0, since U0 is an eigenstate of H within the nodal boundaries.
Diffusion Monte Carlo attains the mixed distribution by starting with a distribution of W2

T and interpreting the action of
the Green’s function as a stochastic process with branching and elimination, eventually ending up with WTU0. It has the
advantage that the s!1 limit is easy to achieve, but the disadvantage of not having access to the pure distribution. A more
subtle limitation is that the branching process spoils any imaginary-time data and can decrease the efficiency of the simu-
lation if there is too much branching. Even with these limitations, in current implementations DMC is probably the most
efficient way to obtain the fixed-node approximation to the ground state energy.

DMC is implemented almost identically to VMC, except that the time step is typically much smaller and each configura-
tion accumulates a weight equal to exp½�seff ðELðR0Þ þ ELðRÞ � 2Eref Þ=2�. Since we use an acceptance/rejection step, seff is cho-
sen somewhat smaller than s as seff ¼ qs, where q is the acceptance ratio. To control the fluctuations in the weights, we
employ a branching algorithm that keeps the number of configurations constant, which improves the parallel load balancing
properties of DMC. Every few steps we choose a set of configurations that have large weights (w1) for branching. Each one of
these configurations is matched with a smaller weight configuration (w2) which is due for killing. The large weight config-
uration is branched and the small weight configuration is killed with probability w1

w1þw2
, with each copy gaining a weight of

w1þw2
2 . Otherwise, the small weight configuration is branched and the large weight configuration is killed, with the copies hav-

ing the same weight as before. Configurations are then exchanged between nodes to keep the number of configurations on
each node constant, and thus preserve high parallel efficiency. QWalk keeps track of two numbers: Eref and E0. Eref is first set
to the VMC average energy, and then to the energy of the last block. The energy that goes into the weights, E0, is then cal-
culated every few steps as



L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404 3393
E0 ¼ Eref � f ln
P

wi

Nconf

� �
; ð7Þ
where Nconf is the number of configurations in the simulation and f is a positive constant that controls how quickly the
weights return to the average value.

During the DMC calculation, the local energy will very occasionally fluctuate down significantly, causing the weight to
increase too much. Of course, this is very much dependent on the quality of the trial function and the studied system. This
can be fixed by limiting the growth of the weights. For fluctuations beyond ten standard deviations of the energy, we
smoothly bring the effective time step to zero for the weights, which avoids the efficiency problem without introducing a
noticeable error. However, if this weight limiting appears too often it can bias the final results and decreasing of the time
step is necessary. The bias due to this cutoff goes to zero as the time step goes to zero or as the trial function approaches
the exact one.

2.3. Reptation Monte Carlo

For operators that do not commute with the Hamiltonian, we use Reptation Monte Carlo [26] with the bounce algorithm
[27]. We sample the path distribution
PðsÞ ¼ WTðR0ÞGðR0;R1; sÞ � � �GðRN�1;RN ; sÞWTðRNÞ; ð8Þ
where s ¼ ½R0;R1; . . . ;RN�1;RN� is a projection path. In the limit as s!1, expð�HsÞjWTi ! jU0i, the ground state, and, since
it is a Hermitian operator, the conjugate equation also holds. Therefore, the distribution of R0 and RN is the mixed distribu-
tion WTðRÞU0ðRÞ, and the distribution of RN=2 is U2

0ðRn=2Þ in the limit as n!1. We evaluate the energy as ERMC ¼ h½ELðR0Þþ
ELðRNÞ�=2i and operators non-commuting with H as ORMC ¼ hOðRN=2Þi Reptation Monte Carlo does not include branching, in-
stead it uses an acceptance/rejection step. This is a tradeoff, allowing us to project only for a finite s, since otherwise the
probability distribution function is not normalizable, but allowing access to the pure distribution. The path can sometimes
get stuck due to rejections even with the bounce algorithm, which is a well-known limit on the efficiency of the algorithm. In
QWalk, RMC is approximately as efficient as DMC until the rejection rate begins to increase, making the path move very
slowly. In our current implementation we empirically find that this slowdown occurs at approximately 150 electrons,
although it also depends on the type and size of the system and on the quality of the trial wave function.

3. Hamiltonians and model potentials

The methods described in the previous section are very general approximations to the solution of the Schrödinger equa-
tion. They can easily apply not only to the common atoms and molecules, but also to important model systems such one-
dimensional rings and the homogeneous electron gas. As long as the potential is local, it can be implemented into the
QMC framework with a minimum of extra work. Various effective interactions are easy to introduce as well.

Also important for application to heavier nuclei are pseudopotentials, which replace the core electrons with a nonlocal
potential
V̂PSP ¼ VlocalðrÞ þ
Xlmax

l¼0

VlðrÞjlihlj; ð9Þ
where jlihlj is the projector onto angular momentum l and r is the electron–pseudoion distance. While any pseudopotential of
this form can be used, we use potentials which are bounded for r ! 0 unlike several pseudoptentials which contain �Zeff =r
Coulomb term. These bounded pseudopotentials have been created specifically for QMC and are available in the literature
[28–31], although more traditional Hartree–Fock or DFT pseudopotentials in the Troullier–Martins form work as well. The
removal of the divergence of the potential energy near the nucleus increases the efficiency of the QMC calculation, often
by orders of magnitude. The nonlocality can be treated exactly in VMC[32], and approximately[33] or variationally [34] in
DMC/RMC approaches.

4. Forms of the wave function

The most commonly used trial wave function in QMC calculations is of the Slater–Jastrow product
WT ¼ WAeU ; ð10Þ
where WA is the antisymmetric part while eU is the Jastrow correlation factor (explained in the next subsection). The anti-
symmetric part is given as a single Slater determinant or a linear combination of Slater determinants
WA ¼
X

ciD
"
i D#i ; ð11Þ
where D"ð#Þi is a determinant of the spin up (down) one-particle orbitals calculated in Hartree–Fock (HF) or density functional
theory (DFT) approaches.



3394 L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404
4.1. Jastrow factor

The Jastrow factor is written as eU , where
U ¼
X

iIk

cen
k akðriIÞ þ

X
ijk

cee
k bkðrijÞ þ

X
ijIklm

ceen
klm½akðriIÞalðrjIÞ þ akðrjIÞalðriIÞ�bmðrijÞ; ð12Þ
i; j are electron indexes, and I is a nuclear index. Both the coefficients and parameters within the basis functions can be opti-
mized. In addition, the fceeg and fceeng coefficients can be made spin-dependent. For the basis functions, we satisfy the exact
electron–electron cusp conditions with the function bðrÞ ¼ cpðr=rcutÞ=ð1þ cpðr=rcutÞÞ, where pðyÞ ¼ y� y2 þ y3=3, c is the cur-
vature, which is optimized, and c is the cusp (1/4 for like spins and 1/2 for unlike spins). Further correlation is added by
including functions of the form bkðrÞ ¼ akðrÞ ¼ 1�zðr=rcutÞ

1þbkzðr=rcutÞ where zðxÞ ¼ x2ð6� 8xþ 3x2Þ and bk is an optimized parameter.
These functions have several favorable properties, going smoothly to zero at a finite cutoff radius, and covering the entire
functional space between 0 and rcut. This allows the Jastrow factor to be very compact, typically requiring optimization of
around 25 parameters while still coming close to saturating the functional form. While these are the standard basis func-
tions, they can be replaced or augmented by any in the program by a simple change to the Jastrow input. The third term
in Eq. (12), which sums over two electron indices and ionic indexes, can be expensive to evaluate for large systems and is
sometimes excluded. A Jastrow factor with only the first two terms is called a two-body Jastrow, and with the een term in-
cluded is called a three-body Jastrow.

One of the key advantages of QMC is that, since all the integrals are done by Monte Carlo, almost any ansatz can be used,
as long as it is reasonably quick to evaluate. We generally begin with a Slater determinant or sum thereof, then multiply by a
symmetric Jastrow correlation factor. This Jastrow factor improves the efficiency of DMC, but not the fixed-node approxima-
tion, since it does not change the nodes. It is quite remarkable that this simple form, even with only single term in the Slater
determinant sum, proved to be rather accurate for whole range of systems and between 90% and 95% of the correlation en-
ergy is typically obtained with this trial wave function in the fixed-node DMC method.

The accuracy can be further improved by replacing the Slater determinant with the compact pfaffian or backflow func-
tions, that allow electron correlation to change the nodes and thus improve the fixed-node DMC accuracy.

4.2. Pfaffian pairing wave function

Pairing wave functions with a Jastrow factor for molecules were first investigated by Casula and coworkers [35], who
studied the constant number of particles projection of the BCS wave function. The general Jastrow-BCS pairing wave function
can be expressed as WBCS ¼ eU det½U�, where eU is the Jastrow factor of above and the matrix Uij ¼ /ðrii; rjÞ is the pairing func-
tion between opposite-spin electrons (the function is easily extended for Nup – Ndown). This function contains the Slater
determinant as a special case (for singlet spin state) when / is written as the sum over the occupied single-particle orbitals:
/ðri; rjÞ ¼

PNe
k ukðriÞukðrjÞ. We have also implemented the more general pfaffian [8] pairing wave function, which allows for

singlet (unlike) spin pairing, triplet (like) spin pairing in addition to possible unpaired single-particle states. The general pfaf-
fian pairing wave function WPF is written as the pfaffian of the antisymmetric matrix
UPF ¼ pf
n"" U"# u"

�U"#T n## u#

�u"T �u#T 0

2
64

3
75eU ; ð13Þ
where U"#; n""ð##Þ and u"ð#Þ represent the following block matrices. The U"# is the singlet pairing matrix as in the above BCS
wave function, the u"ð#Þ includes additional unpaired one-particle orbitals for a spin-polarized system. Finally, the n""ð##Þ

are antisymmetric triplet pairing matrices. The operation of the pfaffian ensures that the entire wave function is antisym-
metric. The pfaffian wave function contains the BCS wave function as a special case without triplet pairing, and therefore
contains the Slater determinant wave function as well. The general expansion for U is
U"#ðr1; r2Þ ¼
X

kl

cklu"kðr1Þu#l ðr2Þ ð14Þ
under the constraint that ckl ¼ clk:n is written in a very similar way
n""ðr1; r2Þ ¼
X

kl

d""kl u
"
kðr1Þu"l ðr2Þ ð15Þ
under the constraint that d""kl ¼ �d""Þlk and similarly for the ## channel. The sum extends over the space of occupied and virtual
orbitals. All pairing functions as well as unpaired orbitals are fully optimizable within VMC. The extensions of pfaffian pairing
wave function to linear combinations of pfaffians with one or many sets of different pairing functions are also possible. For
more information about the performance and implementation of the pfaffian wave function, see Refs. [8,36].

4.3. Backflow correlated wave function

Another way to systematically improve the nodal structure of trial wave function is through the introduction of backflow
transformation [37–45]. Given a trial wave function of form WTðRÞ ¼ WAðRÞeU , the nodal structure is completely defined by



L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404 3395
the nodes of its antisymmetric part WAðRÞ. The backflow transformation replaces WAðRÞ by WAðXÞ, where X ¼ ðx1;x2; . . .Þ are
some quasi-coordinates dependent on all electron positions R, such that overall antisymmetry is preserved. The nodes of
WAðXÞ can then differ from nodes of WAðRÞ and improve the fixed-node approximation.

The quasi-coordinate of ith electron at position ri is given as
xi ¼ ri þ niðRÞ ¼ ri þ nen
i ðRÞ þ nee

i ðRÞ þ neen
i ðRÞ; ð16Þ
where ni is the ith electron’s backflow displacement divided to the contributions from one-body (electron–nucleus), two-
body (electron–electron) and three-body (electron–electron–nucleus) terms. They can be further expressed as
nen
i ðRÞ ¼

X
I

X
k

cen
k akðriIÞ

" #
riI; ð17Þ

nee
i ðRÞ ¼

X
j–i

X
k

cee
k bkðrijÞ

" #
rij; ð18Þ

neen
i ðRÞ ¼

X
I;j–i

X
klm

ceen
klm½akðriIÞalðrjIÞ þ akðrjIÞalðriIÞ�bmðrijÞ

" #
rij þ

X
klm

deen
klm½akðriIÞalðrjIÞ þ akðrjIÞalðriIÞ�bmðrijÞ

" #
riI; ð19Þ
where rij ¼ ri � rj and riI ¼ ri � rI . The terms in the large square brackets are identical to the previously introduced one, two
and two three-body Jastrow terms from Eq. (12). The implementation of backflow transformation therefore takes great
advantage of already existent Jastrow. The improvement in nodal structure and gains in correlation energies can be achieved
by optimizing all the Jastrow parameters within backflow transformation. For more details about implementation and per-
formance of backflow transformation in QWalk see Ref. [36].

5. Correlated sampling approach to small energy differences

Correlated sampling is a technique where one samples two very similar systems with the same sets of samples. The var-
iance in the difference of two random variables A and B is given by VarðA� BÞ ¼ VarðAÞ þ VarðBÞ � 2CovðA;BÞ, so if the fluc-
tuations in A and B are highly correlated, the variance of the difference will be decreased significantly. For example, suppose
we have generated a set of samples distributed according to some probability distribution P1ðXÞ. Averages are obtained as
usual by calculating the integral hO1iP1

¼
R

P1ðXÞO1dX. Suppose we wish to find hO2iP2
� hO1iP1

. This can be written as
Z
P2ðXÞO2 � P1ðXÞO1dX ¼

Z
P1ðXÞ

P2

P1
O2 � O1

� �
dX: ð20Þ
Since the samples are distributed according P1ðXÞ this integral is evaluated by averaging the following weighted difference:
XM

i

wiðXiÞO2ðXiÞP
jwiðXiÞ

� O1ðXiÞ
M

" #
; ð21Þ
where wiðXiÞ ¼ P2ðXiÞ=P1ðXiÞ.
We can thus optimize the wave function using the same set of sample points [46] to evaluate the differences in energy

between separate parameter sets. Since the samples are then correlated (they are the same!), small energy differences can be
determined with much greater precision than the total energy. However, the expectation value of the energy is not bounded
by below for a finite number of samples (as it is for an infinite sample set), so there are numerical problems with simply
optimizing the energy using this technique. However, there are many quantities other than energy that can be minimized
to provide a good approximation to the ground state wave function. A classical example is the variance of the local energy
given by
r2 ¼
R

dRW2
TðRÞðEloc � hElociÞ2R

dRW2
TðRÞ

: ð22Þ
Since Eloc is a constant when jWTi ¼ jU0i, the variance vanishes for an exact eigenstate [46]. There are several other possible
functions that can be optimized, summarized in Table 1. In order to optimize the energy efficiently, one can use the same
fixed sample set, but evaluate a low-variance estimator of the Hessian matrix [47] and use Newton’s method, bypassing
the lower-bound problem.

Beyond using a fixed set of sample points to optimize the wave function parameters, one can also perform on-the-fly cor-
related sampling between two similar systems. This may be a small change in the nuclear coordinates or the electric field.
For VMC, this can be done exactly by setting the weights equal to wðXÞ ¼ W2

2ðXÞ=W
2
1ðXÞ. DMC and RMC both require some

approximation to the Green’s function to weight the secondary averages correctly. We use the approximation of Filippi
and Umrigar [48], who discuss the subject in a greater detail.



Table 1
Optimization objective functions implemented.

Function Minimized quantity

Variance hðELðRÞ � Eref Þ2i
Energy hELðRÞi
Mixed aEnergyþ ð1� aÞVariance; 0 < a < 1
Absolute value hjELðRÞ � Eref ji
Lorentz hlnð1þ ðELðRÞ � Eref Þ2=2Þi

3396 L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404
6. Organization and implementation

In Fig. 1, we provide a representation of the data flow for a QMC calculation. The common thread of all calculations is that
one starts with a model Hamiltonian, defines a trial wave function to describe the solution to the eigenstate of the Hamil-
tonian, and then applies one or several QMC methods to either evaluate the properties of the trial wave function (VMC) or to
approximately solve for the eigenstate given the nodes of the trial wave function (DMC and RMC). QWalk casts these math-
ematical objects directly into C++ base classes as listed in Table 2. Each of these base classes has a well-defined interface,
with which each of the other classes work with. For example, the VMC method does not need to know the actual form of
the wave function; only what its value and derivatives are. Thus, it remains agnostic and the user can plug in whatever wave
function that can provide those quantities.

The code is written in a coarse-grained object-oriented approach, creating independent sections of code that are written
efficiently using procedural programming techniques. It is extremely modular; almost every piece can be removed and re-
placed with another without modifying other sections of code. The modular structure also allows for partial rewrites of the
code without worrying about other parts. In fact, each major module has been rewritten several times in this manner as we
add new features and refactor the code. For the user, this structure shows itself in flexibility.
Fig. 1. Flow of a QMC calculation.

Table 2
The central objects of the code and their physical correspondents.

Class name Mathematical object

System Parameters and form of the Hamiltonian
Sample point R, the integration variables
Wave function type Wave function ansatz
Wave function WT ðRÞ;rWT ðRÞ;r2WT ðRÞ
Method Monte Carlo algorithm



L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404 3397
We will now provide a listing of the available instances for the major classes, along with some details of their
implementation.

7. Base classes of objects

The features of QWalk are determined by the list of implemented objects. We list the main classes as well as currently
available types within the classes.

7.1. System

This class determines the Hamiltonian of the system.
Currently implemented:

� Open boundary conditions (molecules).
� 3D periodic boundary conditions (solids). Slabs and 1D systems are treatable with large cells in the non-periodic direction.
� 1D ring with a magnetic field penetrating the center.
� Simple harmonic oscillator potential.
� Homogeneous electron gas.
7.2. Method

Perform some calculation using the System and Wave function defined.
Currently implemented:

� Variational Monte Carlo evaluation of expectation values using delayed rejection moves [19].
� Optimization of wave function parameters including:

– coefficients of Slater determinants,
– backflow parameters,
– pairing functions,
– Jastrow coefficients using one of several optimization methods including:
– Correlated sampling optimization of the variance, mean absolute deviation, or Lorentzian of the local energy [46,49].
– Correlated sampling optimization of the average energy using Newton’s method and a modified Hessian [47].
� Diffusion Monte Carlo using either standard moves [50] or specially adapted moves for full-core atoms [20].
� Reptation Monte Carlo [26] using bounce moves [27].
7.3. Wave function

Functional form of the wave function. The properties of these wave functions can be evaluated directly using variational
Monte Carlo, or they can be used as trial functions for diffusion Monte Carlo and reptation Monte Carlo. These functions can
be multiplied or added together by using meta-wave functions.

Currently implemented:

� A single or multiple Slater determinants, with several different kernels for orbital evaluation.
� Jastrow correlation factor as described in Ref. [11].
� Pfaffians [8].
� Backflow wave functions [45].
7.4. Basis function

A function of a particle absolute position (for plane waves) or relative position from the basis function center loca-
tion. At the time of this writing, there are ten written basis functions ranging from Gaussian functions to plane waves to
Padé approximants. For brevity, we do not provide a complete list. These functions are used to represent the wave func-
tion as a linear or nonlinear combination of functions, evaluate pseudopotentials, and for other uses throughout the
code.

7.5. Average generator

Evaluation of expectation values of given quantities (quantum mechanical operators). This can be done for any averaging
method (variational, diffusion, or reptation Monte Carlo). Total energy and its components are averaged automatically. The
user can further request any of the following:



3398 L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404
� Dipole moment of a molecule.
� Two-body correlation function between like and unlike spins (e.g., between unlike spins ðNe"Ne#Þ�1P

ijdðr � rijÞÞ.
� The static structure factor N�1

e

P
i expðk � riÞ

P
i expð�k � riÞ.
7.6. Miscellaneous features

� Automated conversion from GAMESS [51], CRYSTAL [52], Gaussian [53], SIESTA [54]. Each of these converters prepares a
starting QWalk setup with the atoms, pseudopotentials, trial function from the DFT/quantum chemistry code, and an
appropriate starting Jastrow correlation function.

� Nonlocal pseudopotentials are supported, both in the localization approximation [33] and variationally in diffusion Monte
Carlo [34].

� Correlated sampling between two similar systems using space warping in both VMC [55] and DMC/RMC using an approx-
imation [48].

� A powerful averaging utility that supports error estimation for user-written average generators.
8. Examples

8.1. Example of implementation: VMC

The classes form a tree of successive abstractions (Fig. 2). At the top of the tree is the QMC method, VMC in this case. It
works only in terms of the objects directly below it, which are the concepts of System, Wave function data, etc. (see Table 2).
These in turn may have further abstractions below them, as we have shown for the wave function object. The highest wave
function object is of type ‘Multiply’, which uses two wave function types to create a combined wave function. In this case, it
multiplies a Slater determinant with a Jastrow correlation factor to form a Slater–Jastrow function. Since the wave functions
are interchangeable, the Slater determinant can be replaced with any antisymmetric function, as well as the Jastrow factor.
The type is listed along with the specific instance of that type in parenthesis. At each level, the part in parenthesis could be
replaced with another module of the same type.

We present an implementation of the VMC algorithm as an example of how the code is organized (Fig. 3). For reasons of
space, we do not write the function line-by-line, which includes monitoring variables, etc., but instead give a sketch of the
algorithm. The VMC method works at the highest level of abstraction, only in terms of the wave function, system, and ran-
dom dynamics. It does not care what kind of system, wave function, etc. are plugged in, only that they conform to the correct
interfaces. In Appendix A, we give an example of how to create a new module.
Fig. 2. Partial calculation structure for the VMC method on a molecule using a Slater–Jastrow wave function. Each vertical level represents a level of
abstraction. The VMC method uses a dynamics generator to move electronic configurations using the Hamiltonian defined in the System object and the
variational wave function defined in the Wavefunction_data object. Also shown is the object structure for the wave function calculation.



Fig. 3. Simple VMC code.

L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404 3399
8.2. Example calculation

To give a feeling for the flow of the program, we will go through a simple calculation. A schematic of the procedure is
given in Fig. 1. The first two steps are to choose the system and use a code such as GAMESS or CRYSTAL to prepare the
one-particle orbitals, which is done as usual for the code. The converter program included with QWalk then creates the sys-
tem, slater, and jastrow files automatically, so all the user must do is use the include directive to use them. In Fig. 4, we
evaluate the properties of the starting Slater wave function by creating 500 electron configurations, and then propagating
them for 16 blocks, each of which consists of 10 Monte-Carlo steps with a time step of 1.0 a.u. The final set of configurations
Fig. 4. Example input file for VMC evaluation of properties. This corresponds to the fourth box in Fig. 1.



Fig. 5. Example input file for optimization of variational parameters. This is the fifth box in Fig. 1.

Fig. 6. Example input file for evaluation of properties of the correlated wave function, plus a DMC calculation. This corresponds to the sixth and seventh
block in Fig. 1.

3400 L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404
is then stored in configfile, and QWalk outputs the total energy and other properties that have been accumulated along
the way.

We then wish to correlate the wave function by including the Jastrow factor (Fig. 5). The converter has already created a
starting Jastrow wave function with all coefficients equal zero except the exact electron–electron cusps, which have values
1=2 and 1=4 as explained before. Therefore we request a Slater–Jastrow product form. The first factor is the Slater determi-
nant that we used before while the second is the Jastrow created by the converter. We request optimization using a fixed set
of configurations that we generated in the previous VMC run.

Finally, we wish to evaluate properties of the new correlated wave function using the VMC routine (Fig. 6). This input file
is similar to the last, except that we include the output wave function from the optimization in the trialfunc section. Also in
the example, we perform a DMC calculation immediately after the VMC calculation. Its input is nearly identical to that al-
ready discussed.

9. Performance and portability

It is clearly important for a program to be able to both run efficiently on many architectures and to be portable to many
compilers. To this end, we have carefully kept the code in standard C++, with a minimum of external libraries. It compiles
using the Intel C++ compiler, GNU Compiler Collection, Portland Group, IBM’s xlC compiler, and Pathscale compilers on
all systems which support those compilers. QWalk can optionally use BLAS linear algebra libraries and MPI for parallel oper-
ation. The program, however, will compile without these libraries, so the barrier to entry is quite low.

QWalk is designed to be memory efficient as much as possible. The amount of memory required scales as OðN2
e Þ, primarily

from the distance matrix between electrons, the orbital coefficients, and the updates for the Jastrow factor. Using a Siesta
trial function and a system of 256 Si atoms (1024 valence electrons), the program uses approximately 590 MB of memory
per processor core, well within the capabilities of most systems.

The cost of a QMC calculation can be estimated as T ¼ TsNdr2=�2, where T is the total computer time, Ts is the time taken
for one Monte Carlo step, Nd is the number of steps to decorrelate sequential samples, r2 is the variance of the desired quan-
tity, and � is the desired stochastic uncertainty. While the scaling is very favorable, the prefactor is large, approximately by a
factor of 100 to 1000, depending on the type of the system, over that of DFT. It is informative to compare Coupled Cluster
with single and double excitations (CCSD) and a triple-zeta basis to DMC (Table 3), since they often offer similar accuracy.
While CCSD does not obtain as much of the correlation energy as DMC, it is much faster for small systems; however, DMC
quickly overtakes CCSD at around 10 valence electrons due to superior scaling. There are of course many variables that affect
the relative performance of the two methods, and we make no attempt to account for all of them; these calculations are just
to give an idea of how one should choose between them.



0 1000 2000 3000 4000 5000
Number of processors

0

1000

2000

3000

4000

M
C

 s
te

ps
/s

ec
on

d

Linear fit

Fig. 7. Scaling of QWalk code performing a diffusion Monte Carlo calculation by distributing independent configurations across nodes. This calculation was
performed on the Franklin supercomputer at NERSC.

Table 3
Computer time needed to calculate two simple systems using CCSD and DMC. The time is normalized to the CCSD calculation on methane. Ec is defined as the
Hartree–Fock energy minus the calculated energy for the method. QWalk was used to perform the DMC calculation and GAMESS was used for the CCSD
calculation. The DMC result uses a Slater–Jastrow wave function and includes all steps of the QMC calculation, including optimization of the Jastrow correlation
factor. Pseudopotentials were used for both methods to remove the core electrons.

System Method Ec Computer time

Methane CCSD 0.193 1
Methane DMC 0.240(1) 43.3
Ethane CCSD 0.404 273.3
Ethane DMC 0.438(2) 123.3

L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404 3401
Parallel performance is particularly important for accurate but computationally demanding methods such as quantum
Monte Carlo. While systems with a few tens of electrons are currently feasible on a single processor, larger systems require
parallel platforms. Fortunately, for small and moderately sized systems which fit into local memory, Monte Carlo methods
are quite easy to parallelize using the replicated configuration strategy, where each processor owns one or more electronic
configurations and the simulations proceed practically independently. Diffusion Monte Carlo requires some special care,
however, because it contains a branching/killing step that can change the total number of configurations in the calculation.
We have implemented an algorithm that keeps the total number of configurations constant while keeping the communica-
tion to a minimum. This leads to 99% efficient scaling up to 4096 processor cores, the maximum number that we have tested
(Fig. 7).

We have presented the number of Monte Carlo steps per second; the actual efficiency for a calculation is slightly more
complicated. All Monte Carlo methods require a warmup period, and increasing the number of replicated configurations in-
creases the number of warmup periods that need to be thrown away (one period per configuration). Suppose that to obtain
the stochastic uncertainities desired, we require Np production Monte Carlo steps, the warmup period is Nw steps, and we are
using Nc configurations (processor cores). The proportion of time spent in warmup (and thus wasted) is then
NwNcðNp þ NwNcÞ�1. For typical values of Np ¼ 107 and Nw ¼ 102, this fraction is 0.09 for 10,000 processor cores, an overall
parallel efficiency of 91%.
10. Development strategy

The source code is kept in a public Mercurial [56] (a distributed revision control system) repository. This provides a rel-
atively easy path for incorporation of code from contributors, since it allows the following development strategy:

(1) The researcher downloads the source code repository with the history of all changes. The repository is now local to the
developer’s computer.

(2) The researcher then programs the new feature, and can keep up to date with the mainline development by pulling
from the public repository. This does not require sharing of his or her revisions.



3402 L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404
(3) Simultaneously with publishing a paper on the new results, the researcher can make his or her work immediately
available publicly by sending a patch to the mainline maintainer. There are tools and a tutorial on the QWalk website
that make this process very simple.
11. Conclusion

QWalk is a state of the art, usable, and extensible program for performing quantum Monte Carlo calculations on electronic
systems. It is able to handle medium to large systems of electrons; the maximum size is mostly limited by the available com-
puter time. It works in parallel very efficiently (Fig. 7), so it can take advantage of large clusters and multi-core computers.
Since QWalk is available without charge and under the GNU Public license, it is hoped that it will help bring both develop-
ment and use of quantum Monte Carlo methods to a wide audience. Due to its modular form it is straightforward to expand
the QWalk’s applicability to quantum systems beyond the electron–ion Hamiltonians in continuous space such as models of
BEC/BCS condensates and other quantum models. It is easy to modify the system module to incorporate other types of inter-
actions and to expand the one-particle and pair orbitals using the coded basis functions.

There are two major directions forward for development. The first is performance. While QWalk is efficiently coded, QMC
methods are nevertheless very computationally demanding, and any performance improvements are welcome and desirable.
Strategies for parallelization will soon need to be improved as well, since the distributed configuration strategy begins to lose
efficiency at around 10,000 processors, particularly when large stochastic uncertainties are acceptable. Work is currently
progressing on this front.

The second direction is the addition of new features. QMC has tremendous flexibility in the choice of wave function; it
must only be reasonably fast to evaluate. QWalk provides the developer with the opportunity to easily write and try out
new wave functions. A similar advantage also exists for the choice of Hamiltonian, expectation value, and Monte Carlo meth-
od. With a moderate amount of developer effort, QWalk has the opportunity to become a large collection of models and wave
functions, where a wave function developed for one Hamiltonian can immediately be tried with another, with access to
many QMC methods for analysis.
Acknowledgments

We would like to extend our thanks to Zack Helms, David Sulock, Prasenjit Sen, Ji-Woo Lee, Jindřich Kolorenč, Jeffrey
Grossman, and Pavel Vagner for early testing of the code, and in the case of Zack Helms, Pavel Vagner, Jindřich Kalorenč
and David Sulock, contributions to some parts. This has been a long-term project and funding has been provided by an
NSF Graduate Research Fellowship for L. Wagner and further by EAR-0530110 and DMR-0804549 NSF grants, by DOE DE-
FG05-08OR23336 Endstation grant, by INCITE, CNMS allocations at ORNL and by allocation at NCSA.

Appendix A. Adding a module

We provide an example of how to add a new module. In this case, we look at a Basis_function object, which has the fewest
functions to fill in. All modules can be added in exactly the same way, differing only in what functions need to be defined.
Suppose we wish to add a Gaussian function expð�ax2Þ. First we declare the new module in a header file:

class Gaussian_basis:public Basis_function {
public:

//read the input

void read(vector <string> & words);
//the distance at which the function is zero double cutoff();
//The work functions. Given a distance,
//getVal returns the values

//and getLap returns the values, first
//derivatives with respect to x,y, and z,
//and the Laplacian

void getVal(Array1 <doublevar> & r,
Array1 <doublevar> & vals);

void getLap(Array1 <doublevar> & r,
Array2 <doublevar> & vals);

private:
//put local variables here

double alpha;3
double cut;

};



L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404 3403
Then we define the new functions:

Gaussian_basis<read(vector <string> & words) {
unsigned int pos=0;
if(!readvalue(words, pos,alpha,”ALPHA”))
error(”Need ALPHA in gaussian basis”);

const double m=1e-18;
cut=sqrt(-log(m/alpha));

}
Gaussian_basis<cutoff() {
return cut;

}
Gaussian_basis<getVal(Array1 <doublevar> & r,

Array1 <doublevar> & vals) {
//The basis function module can represent several

//functions, which are put into the vals array.
//Here we only have one.
//r is an array of form r,r

2
,x,y,z

vals(0)=exp(-alpha*r(1));
}
//getLap is omitted for space reasons

The programmer then adds the source file to the Makefile and into a single if statement in the Basis_function.cpp file. The
module can now be used anywhere another Basis_function can be used. All the modules follow this basic procedure, just
with different functions.

Appendix B. Plane wave to LCAO converter

Gaussian basis sets have been used in quantum chemistry for years and have been developed to the point that there are
well-defined sets which saturate the one-body Hilbert space surprisingly quickly. They are localized, which improves the
scaling of QMC, and allow a very compact expression of the one-particle orbitals, so less basis functions need to be calcu-
lated. Overall, a gaussian representation can improve the performance of the QMC code by orders of magnitude over the
plane-wave representation. We have developed a simple method to do this conversion that is fast and accurate. We start
with the plane-wave representation of the kth orbital Ukð~rÞ ¼

P
~Gck~Ge~Gð~rÞ, and wish to find the LCAO equivalent

ULCAO
k ð~rÞ ¼

P
jakj/jð~rÞ, where e~G is a plane-wave function and /j is a Gaussian function. Maximizing the overlap between

Uk and ULCAO
k , we obtain Sak ¼ Pck, where Sij ¼ h/ij/ji and Pi~G ¼ h/ije~Gi. Then the Gaussian coefficients are given as ak ¼

S�1Pck. All the overlap integrals are easily written in terms of two-center integrals for S, and P is easily evaluated in terms
of a shifted Gaussian integral. The limiting part of the conversion is the calculation of the inverse of S, which can be done
with fast LAPACK routines.

References

[1] W.M.C. Foulkes, L. Mitas, R.J. Needs, G. Rajagopal, Rev. Mod. Phys. 73 (2001) 33.
[2] J. Grossman, J. Chem. Phys. 117 (2002) 1434.
[3] P.R.B.L. Hammond, W.A. Lester Jr., Monte Carlo Methods in Ab Initio Quantum Chemistry: Quantum Monte Carlo for Molecules, World Scientific, 1994.
[4] A. Lüchow, J.B. Anderson, Ann. Rev. Phys. Chem. 51 (2000) 501–526.
[5] A. Aspuru-Guzik, W.A. Lester Jr., Handbook of Numerical Analysis, Special Volume: Computational Chemistry, vol. X, Elsevier, 2003. p. 485.
[6] D. Ceperley, L. Mitas, Adv. Chem. Phys. 93 (1996) 1.
[7] J. Grossman, L. Mitas, Phys. Rev. Lett. 94 (2005) 056403.
[8] M. Bajdich, L. Mitas, G. Drobny, L. Wagner, K. Schmidt, Phys. Rev. Lett. 96 (2006) 130201.
[9] M. Bajdich, L. Mitas, G. Drobny, L. Wagner, Phys. Rev. B 72 (2005) 075131.

[10] P. Vagner, M. Mosko, R. Nemeth, L. Wagner, L. Mitas, Physica E (2006) 350.
[11] L.K. Wagner, L. Mitas, J. Chem. Phys. 126 (3) (2007) 034105.
[12] M. Bajdich, L. Mitas, L.K. Wagner, K.E. Schmidt, Phys. Rev. B (Condens. Mat. Mater. Phys.) 77 (11) (2008) 115112.
[13] R.J. Needs, M.D. Towler, N.D. Drummond, P. López Ríos, CASINO version 2.3 User Manual, University of Cambridge, Cambridge, 2008.
[14] A. Aspuru-Guzik, R. Salomón-Ferrer, B. Austin, R. Perusquía-Flores, M.A. Griffin, R.A. Oliva, D. Skinner, D. Domin, W.A. Lester Jr., J. Comput. Chem. 26 (8)

(2006) 856.
[15] J. Kim et al., Qmcpack, materials computation center. URL: <http://www.mcc.uiuc.edu>.
[16] C. Umrigar, C. Filippi, Cornell–Holland Ab-initio Materials Package. URL: <http://pages.physics.cornell.edu/simcyrus/champ.html>.
[17] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21 (1953) 1087–1092.
[18] W. Hastings, Biometrika 57 (1970) 97–109.
[19] D. Bressanini, G. Morosi, S. Tarasco, A. Mira, J. Chem. Phys. 121 (8) (2004) 3446–3451.
[20] C. Umrigar, M. Nightingale, K. Runge, J. Chem. Phys. 99 (1993) 2865.
[21] J.B. Anderson, J. Chem. Phys. 63 (4) (1975) 1499–1503.
[22] J.B. Anderson, J. Chem. Phys. 65 (10) (1976) 4121–4127.
[23] J.W. Moskowitz, K.E. Schmidt, M.A. Lee, M.H. Kalos, J. Chem. Phys. 77 (1) (1982) 349–355.

http://www.mcc.uiuc.edu
http://pages.physics.cornell.edu/~cyrus/champ.html
http://pages.physics.cornell.edu/~cyrus/champ.html


3404 L.K. Wagner et al. / Journal of Computational Physics 228 (2009) 3390–3404
[24] P.J. Reynolds, D.M. Ceperley, B.J. Alder, W.A. Lester Jr., J. Chem. Phys. 77 (11) (1982) 5593–5603.
[25] D. Ceperley, B. Adler, Phys. Rev. Lett. 45 (1980) 566.
[26] S. Baroni, S. Moroni, Phys. Rev. Lett. 82 (1999) 4745.
[27] C. Pierleoni, D.M. Ceperley, ChemPhysChem 6 (2005) 1872.
[28] I. Ovcharenko, A. Aspuru-Guzik, W. Lester Jr., J. Chem. Phys. 114 (2001) 7790.
[29] Y. Lee, P. Kent, M. Towler, R. Needs, G. Rajagopal, Phys. Rev. B and private communication 62 (2000) 13347.
[30] J. Trail, R. Needs, J. Chem. Phys. 122 (2005) 174109.
[31] M. Burkatzki, C. Filippi, M. Dolg, J. Chem. Phys. 126 (23) (2007) 234105.
[32] S. Fahy, X.W. Wang, S.G. Louie, Phys. Rev. Lett. 61 (14) (1988) 1631–1634.
[33] L. Mitas, E. Shirley, D. Ceperley, J. Chem. Phys. 95 (1991) 3467.
[34] M. Casula, Phys. Rev. B (Condens. Mat. Mater. Phys.) 74 (16) (2006) 161102.
[35] M. Casula, C. Attaccalite, S. Sorella, J. Chem. Phys. 121 (2004) 7110.
[36] M. Bajdich, Ph.D. Thesis, North Carolina State University, 2007. URL: <http://altair.physics.ncsu.edu/bajdich/Phd_thesis_m_bajdich.pdf>.
[37] R.P. Feynman, M. Cohen, Phys. Rev. 102 (5) (1956) 1189–1204.
[38] K.E. Schmidt, M.A. Lee, M.H. Kalos, G.V. Chester, Phys. Rev. Lett. 47 (11) (1981) 807–810.
[39] R.M. Panoff, J. Carlson, Phys. Rev. Lett. 62 (10) (1989) 1130–1133.
[40] J.W. Moskowitz, K.E. Schmidt, J. Chem. Phys. 97 (5) (1992) 3382–3385.
[41] Y. Kwon, D.M. Ceperley, R.M. Martin, Phys. Rev. B 48 (16) (1993) 12037–12046.
[42] Y. Kwon, D.M. Ceperley, R.M. Martin, Phys. Rev. B 50 (3) (1994) 1684–1694.
[43] Y. Kwon, D.M. Ceperley, R.M. Martin, Phys. Rev. B 53 (11) (1996) 7376–7382.
[44] N.D. Drummond, P.L. Rios, A. Ma, J.R. Trail, G.G. Spink, M.D. Towler, R.J. Needs, J. Chem. Phys. 124 (22) (2006) 224104.
[45] P.L. Rios, A. Ma, N.D. Drummond, M.D. Towler, R.J. Needs, Phys. Rev. E (Stat., Nonlinear, Soft Mat. Phys.) 74 (6) (2006) 066701.
[46] C. Umrigar, K. Wilson, J. Wilkins, Phys. Rev. Lett. 60 (1988) 1719.
[47] C.J. Umrigar, C. Filippi, Phys. Rev. Lett. 94 (2005) 150201.
[48] C. Filippi, C.J. Umrigar, Phys. Rev. B 61 (2000) R16291.
[49] D. Bressanini, G. Morosi, M. Mella, J. Chem. Phys. 116 (13) (2002) 5345–5350.
[50] P. Reynolds, D. Ceperley, B. Alder, W. Lester Jr., J. Chem. Phys. 77 (1982) 5593.
[51] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A.

Montgomery, J. Comput. Chem. 14 (1993) 1347.
[52] V. Saunders, R. Dovesi, C. Roetti, R. Orlando, C. Zicovich-Wilson, N. Harrison, K. Doll, B. Civalleri, I. Bush, P. DArco, M. Llunell, CRYSTAL 06 User’s Manual,

2008.
[53] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S.

Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg,
V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul,
S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc.,
Wallingford, CT, 2004.

[54] J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Mat. 14 (11) (2002) 2745–2779.
[55] C.J. Umrigar, Int. J. Quant. Chem. Symp. 23 (1989) 217.
[56] Mercurial revision control software. URL: <http://www.selenic.com/mercurial>.

http://altair.physics.ncsu.edu/bajdich/Phd_thesis_m_bajdich.pdf
http://www.selenic.com/mercurial

	QWalk: A quantum Monte Carlo program for electronic structure
	Introduction
	Methods
	Variational Monte Carlo
	Diffusion Monte Carlo
	Reptation Monte Carlo

	Hamiltonians and model potentials
	Forms of the wave function
	Jastrow factor
	Pfaffian pairing wave function
	Backflow correlated wave function

	Correlated sampling approach to small energy differences
	Organization and implementation
	Base classes of objects
	System
	Method
	Wave function
	Basis function
	Average generator
	Miscellaneous features

	Examples
	Example of implementation: VMC
	Example calculation

	Performance and portability
	Development strategy
	Conclusion
	Acknowledgments
	Adding a module
	Plane wave to LCAO converter
	References


